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We describe a new linear scaling tight-binding molecular dynamics method for
nonperiodic systems at finite temperature. We present a scheme for dynamical coupling
of this tight-binding molecular dynamics to empirical potential molecular dynamics for
use in multiscale simulations.  This new coupling of length scales code is applied to the
fracture failure of silicon. Unlike empirical potential simulations that show ductility, our
simulations show crack propagation proceeding by cleaving bonds in sequence. This
marks the first simulation that shows brittle fracture in a realistic model of silicon.
Differences in empirical potential and tight-binding descriptions of atomic bonding are
discussed in the context of fracture.

I. Introduction

The mechanical response of a material to applied stresses or strains often involves
physical processes on a wide range of length scales.  Dislocations that evolve and move
during plastic deformation are a common example.  These topological defects extend
over many lattice constants and have long range strain fields, yet the structure of the core
at the atomic scale determines in large part the mobility of the dislocation, and thus the
plastic response of the material.  A more complex example is the fracture failure of
materials, which has become the archetypal multiscale materials phenomenon.  Here the
effect of long-range elastic fields is focused on a few interatomic bonds at the crack tip.
On the shortest length scale, bonds at the crack tip are distorted and broken as the crack
propagates.  On the atomic to nanometer length scale, dislocations evolve and move, and
voids may open.  Elastic energy stored on length scales up to the dimensions of the
system is slowly released.  The importance of physical processes on a wide range of
length scales makes accurate simulations of materials failure and fracture dynamics based
on first principles calculations a challenge.



brittle-to-ductile transition has been seen.  Similar results were obtained with the original
CLS method,5 which used a tight-binding scheme optimized for speed at the smallest
length scales.  At all temperatures fracture appears to be ductile.  Fig. 1 shows a snapshot
of a well-developed crack at low temperature.  Narrow tendrils of disordered lattice
emanate from the crack surface and small voids appear.   Careful tracing of lattice planes
shows dislocations buried in the tendrils.  In these simulations2,5 the energy to fracture is
some four times what is expected from the brittle-fracture threshold given by the energy
balance argument of Griffith.

These results disagree with experiment,6 where at low temperatures the energy to fracture
is close to the Griffith criterion and the fracture is brittle.  This calls into question the
accuracy of empirical potentials for predicting the nature of fracture, at least in materials
with strong covalent bonds.  Two microscopic mechanisms have been suggested for
brittle fracture.  The first is intuitively obvious; the crack propagates by cleaving the
bonds between two adjacent atomic planes.  The second was proposed by Rice.7 Based on
a comparison of the ratio of surface energy γs to the unstable stacking fault energy γus for
various fcc and bcc metals and for diamond cubic semiconductors, Rice argued that it is
favorable for dislocations to form in silicon.  To reconcile this with the observation of
brittle fracture in silicon, Rice proposed that dislocations are created at the crack tip and
near crack surfaces, but do not contribute to plasticity because they are not mobile.  It is
natural to expect that at higher temperature the dislocation mobility would increase,
suggesting a possible mechanism for the brittle-to-ductile transition.

To better understand why the results of simulations are in apparent disagreement with
experiment, we consider the description of forces on atoms on the smallest length scales.
We describe a new tight-binding molecular dynamics (TBMD) method that enables a
more accurate description of atomic bonding and the forces on atoms arising from
electronic degrees of freedom.  We present a method for coupling the TBMD to empirical
potential molecular dynamics to construct an improved coupling of length scales
simulation methodology that is more accurate on the smallest length scales.  We apply
this simulation tool to the fracture of silicon at low temperature and observe brittle
fracture. Simply increasing the temperature has not, however, shown ductile fracture,
suggesting that the mechanism for the brittle-to-ductile transition may be a kinetic
transition or involve the interaction of the propagating crack with crystalline defects or
microstructure.

II. Simulation Methodology

 The central ideas behind the coupling of length scales methodology and its original



1. The Coupling of Length Scales: a Brief Summary

To simulate crack propagation and other phenomena that span many length scales, we use
the CLS approach developed by Abraham, Broughton, Bernstein, and Kaxiras.5  A CLS
simulation is actually several concurrent simulations. Each simulation uses a different
methodology, and each methodology is chosen according to the need for an accurate and
economical physical description on a particular length scale.  A central feature of CLS is
that a simulation on given length scale is coupled to a simulation on the next larger or
smaller length scale in such a way that dynamical information is freely exchanged
between different regions.  The utility of this approach depends on the existence of a
domain decomposition in which it is possible to identify regions where physical
descriptions of different accuracy are needed.  For crack propagation, such a rough
domain decomposition can be identified: electronic scale resolution at the bonds of the
crack tip, atomic scale resolution in the process zone, and longer length scale resolution –
according to the shortest wavelength elastic waves that are important – outside of the
process zone.

For simulations of very large systems, finite element continuum mechanics is used to
describe the long-ranged elastic fields far from the crack tip.  In the process zone near the
crack tip, the trajectory of each atom is tracked with molecular dynamics, using an
empirical potential to compute the interatomic forces.  In a small region at the crack tip,
forces on atoms are computed with a formulation that uses quantum mechanics to
explicitly describe the electrons that participate in the bonding of atoms.  In this work, a
tight-binding description of the electrons strikes a balance between computational
economy and accuracy.  The methodologies on different length scales are seamlessly
coupled in ‘handshaking’ regions.  The reader is referred to other works where
‘handshaking’ in the original CLS has been described in greater detail.5  This work
focuses on a significant improvement over the original CLS method; it focuses on the
physical description at the smallest length scales where a quantum mechanical
description of highly directional covalent bonds appears necessary to properly determine
the nature of fracture in silicon.  The simulated systems are small enough to be described
entirely atomistically, without a continuum mechanics region.  In the following we
describe a TBMD method and a strategy for coupling TBMD to empirical potential
molecular dynamics, and apply it to the demanding problem of fracture.

2. Forces on Small Length Scales and Tight-Binding Molecular Dynamics

In molecular dynamics, Newton’s classical equations of motion are integrated over time
to simulate the motion of atomic nuclei.  An accurate determination of forces on atoms is



describe an iterative inversion method (IIM) for calculating forces for tight-binding
molecular dynamics.

We identify a region where electronic degrees of freedom must be handled quantum
mechanically.  It is a good approximation to consider this subsystem to be in
thermodynamic equilibrium and able to exchange electrons with the electronic reservoir
composed of the rest of the system.  The force on an atom in the subsystem can be
obtained by differentiating the grand thermodynamic potential of the subsystem with
respect to atomic position at fixed chemical potential.  After formal manipulation, the
force on atom α, Fα , can be expressed8 in terms of a Green’s function matrix G, and
tight-binding Hamiltonian and overlap matrices H and S,

Here the matrix elements of G, H, and S are labeled by position and wavefunction
indices,  Ω is the grand thermodynamic potential, and ai are residues of an approximate
Fermi function9 evaluated at the poles of that function in the upper half plane zi.

The main computational work in evaluating the force equation lies in calculating the
matrix G, which is simply related to H and S through the expression

where z is a complex variable and 1 is the identity matrix.  We use an iterative
biconjugate gradient algorithm8,10 to invert Eq. 2. This method has two important
features: (1) arbitrary matrix elements of G can be fixed to particular values during the
iteration process, and (2) the computational effort in solving Eq. 2 scales linearly with the
number of atoms in the tight-binding subsystem. The central problem in practical
applications of this formula to multiscale problems lies in handling the boundary where
the coupling to empirical potential molecular dynamics occurs. It is possible to choose
the boundary of the tight-binding region to be sufficiently far from the crack tip that the
local environment of the atoms on the boundary resembles an ideal lattice. However,
there is, in general, no symmetry operation that connects two well-separated atoms on the
boundary. The IIM method allows these kinds of nearly ideal lattice boundary conditions
to be implemented with relative ease.  Boundary atoms form a 6 Å wide region.  Matrix
elements of G for boundary atoms are constrained to values for atoms in ideal lattices
with the same orientation and lattice spacing.  This method has been applied to forces on
atoms around vacancies,8 to compute forces in a tight-binding molecular dynamics
simulation of the temperature dependent dislocation core structure,8 and in the simulation
of fracture of silicon.11,12 The application of boundary conditions on G is essentially
equivalent to passivating the dangling bonds of the finite-sized tight-binding region with
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III. Simulation of Fracture Failure of Silicon

1. Descriptions of Bonding in Silicon

A materials-specific model with predictive power for not only the onset, but also the
dynamics of fracture, requires an accurate description of electronic bonding.   While the
most accurate description of electronic bonding is obtained from ab initio density
functional theory based calculations, these methods are computationally expensive.  Here
we use a minimal basis tight-binding description as a compromise between speed and
accuracy.  Because the accuracy of tight-binding methods depends on their functional
form, as well as on the set of experimental data and ab initio calculations included in the
construction of a specific tight-binding model, we are in the process of exploring fracture
properties of several tight-binding models.  Here we focus on two nonorthogonal minimal
basis models.  The first13 (BK-TB) is based on the extended Huckel approach. The
second14 is based on the NRL-TB method. Both models use an sp3 basis.

While both models provide a quantum mechanical description of covalent bonding, they
differ in their functional forms and in the structures to which they were fit.  The BK-TB
model uses the conventional definition of the total energy as a sum of the occupied
electronic eigenvalues and a pairwise repulsive potential.  The fit included total energies
of bulk lattices and defects, and the model has been shown to accurately reproduce bulk
properties of silicon in the diamond crystal structure, energetics of point defects, surfaces,
amorphous structures, and other ‘distorted’ geometries.  The NRL-TB method shifts the
on-site energies by an environment dependent term that replaces the conventional pair
repulsion.  This model was fit to a small number of bulk lattice cohesive energies and
electronic structure information.  It accurately reproduces a large set of materials
properties, including elastic constants and phonon frequencies, point defect formation
energies, surface energies, and surface reconstructions.15  This model also reproduces the
correct sequence of energies for adatom configurations on the (111) surface of silicon.
Both models appear to give a good account of the physics of bonding in silicon, but they
are likely to differ in the way they describe highly distorted and breaking bonds.

2. Tight-Binding and Brittle Fracture

Simulations were performed for a 400Å X 250Å X 12Å slab containing about 50000
atoms described by empirical potentials and about 1000 atoms described by tight-binding.
The configuration of atoms is shown in Fig. 2.  A seed crack was formed by removing
part of a double row of silicon atoms as shown.  A constant displacement was applied to



formation of dislocations during the course of the simulation.  The crack speed can be
determined from the rate of advance of the sequence of breaking bonds and is found to be
~2/3 of the Rayleigh speed. The Rayleigh speed is the speed of surface elastic waves and
is the limiting speed of crack propagation according to linear continuum mechanics.  Fig.
4 shows the crack velocity for simulations of fracture in comparison with the experiments
of Hauch et al.,6 plotted as a function of fracture energy G (not to be confused with the
Green’s function matrix G).  While this is a work in progress, it can be seen that the
simulation and experiment are in reasonably good agreement.  What is most important to
observe is that the critical energy to fracture (the abrupt rise in Fig. 4) in both simulation
and experiment is nearly that predicted by the Griffith criterion.  This is in contrast to
simulations2 using the Stillinger-Weber empirical potential that find the critical energy to
fracture to be some four times the value from experiment, with a similarly large value for
the EDIP empirical potential.  To see directly the difference that the tight-binding region
makes in the fracture simulation, Fig. 5 contrasts the fracture of silicon described purely
by EDIP with the fracture of the EDIP model with an embedded tight-binding region.  It
is important to note that the pure EDIP description shows a significantly larger strain
needed to fracture, and a blunt crack tip with indications of plastic deformation.
Preliminary results from simulations using the NRL-TB model also show brittle fracture
at 200K.  So far, simulations performed at high temperature (1100K) have not shown
ductile behavior for either model.  These simulations show features suggestive of
incipient dislocation formation that heal rapidly on the time scale of the simulation.  This
suggests that dislocation formation and ductility in the fracture of silicon may be a
dynamical effect driven by fluctuations, and may appear on time scales longer than the
total duration of any simulation using the IIM that we have performed so far.  We are also
investigating whether vacancies or interstitials might initiate or catalyze dislocation
formation.

IV. Discussion

 We have shown that brittle fracture may be observed in simulations of a model of silicon
that uses a quantum mechanical description of the bonding between atoms at the crack
tip.  This is in contrast to all empirical-potential based descriptions of silicon.   Holland
and Marder16 have recently shown that brittle fracture can be observed in empirical
potential simulations when an ‘inadvertently modified’ Stillinger-Weber potential is used.
This potential has a bond-bending term that is a factor of two larger than that of the true
SW potential.  This choice is not motivated by any physical consideration and the
physical properties of ‘inadvertently modified Stillinger-Weber’ silicon differ
significantly from those of real silicon.  In contrast, our multiscale silicon model gives a
realistic description of many properties of bulk and amorphous silicon as well as surface



To pursue this line of reasoning further, it is useful to quantitatively examine seemingly
relevant physical properties as described by these models and to revisit the ideas behind
Rice’s original conjecture.  The Table shows a number of material properties that are
likely to be relevant to fracture. These include elastic constants and the surface and
unstable stacking fault energies that Rice suggested govern the interplay between brittle
and ductile fracture.  There are no substantial, systematic differences between the
empirical potentials and the tight-binding models despite the obvious qualitative
differences in fracture simulations.  In all cases the ratio of surface energy to minimum
stacking fault energy is similar, and a comparison of the empirical potentials with the
tight-binding models does not show a trend.

One reason that Rice’s criterion does not predict the difference in behavior between the
models is that it only compares two mechanisms: interplanar cleavage and blunting by
dislocation emission.  The mechanism that is seen in empirical potential simulations,
crack tip amorphization, was not considered by Rice.  Apparently for both the SW and
EDIP empirical potentials this mechanism is the dominant one, although it is not seen in
experiments.  While this observation explains why the parameters considered by Rice do
not reflect the differences between the fracture morphologies of the models, it does not
suggest what are the relevant material properties that do distinguish them.  One simple
possibility is the range of interactions between atoms.  The surface energy of a material
can be measured by separating two slabs to form a new surface and integrating the force
between the two slabs with respect to the separation.  The force between the two slabs
must decay to zero once they are farther apart than the interaction range.  To integrate to
the correct surface energy, shorter-range models (like SW and EDIP) must reach a higher
peak force.  This makes it much harder to separate the atoms of the planes being cleaved
ahead of the crack in an EP simulation, as compared with tight-binding models that can
have a longer interaction range, or with ab initio methods that can have even longer
range.  This effect is shown in Fig. 6, where we plot the energy and force on a sample
under opening displacement in the (111) direction.  The physical reason that many
empirical potentials for silicon are short ranged is that the physics of the interaction
between first neighbors, that of overlapping sp3 hybrid orbitals, is qualitatively different
from that of second neighbors.  It is difficult to capture both in a single functional form,
and so empirical potentials cut off the interaction between surfaces at an unphysically
small separation.

V. Conclusion

We have improved the accuracy of the original CLS methodology to enable the



brittle fracture in a realistic model of silicon.  We are currently investigating in more
detail the origin of the very different fracture behavior observed in empirical potential
and tight-binding descriptions of atomic bonding. We are focusing on whether our hybrid
model of silicon exhibits a brittle-to-ductile transition with increasing temperature and on
the importance of the description of atomic bonding in determining the nature of the
transition.  These investigations will no-doubt lead to further improvements to the CLS
method.  Of particular importance are the smallest length scales, where better coupling
methods that can function seamlessly in ‘handshaking’ regions that deviate significantly
from an ideal lattice geometry will lead to new applications such as the fracture of
complex materials and metals.
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Table:  Properties of silicon relevant to fracture according to different models.
LDA BK-TB NRL-TB SW EDIP

C11 [GPa] 166 145 179 162 175
C12 [GPa] 63.3 84.5 73 81.6 65
C44 [GPa] 79.3 53.4 96 60.3 71
γs  <111> [J/m2] 1.7 1.5 1.6 1.45 1.64
γus  (glide) [J/m2] 2.51 4.0 3.6 4.78 3.24
γus (shuffle) [J/m2] 1.84 1.9 2.3 1.38 2.16
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Figure Captions
Figure 1: Coupled Stillinger-Weber empirical potential and finite element continuum mechanics
simulation of fracture in silicon.  The left hand panel shows a large scale view of the crack, and right hand
panel details the structure of a tendril of disordered material with a dislocation at its tip.

Figure 2: Detail of initial crack tip in the IIM simulation.  Red atoms indicate the empirical potential
region, green atoms indicate the tight-binding region, and blue atoms indicate the handshaking region.

Figure 3: Simulation snapshots showing the crack position at 4 times in a coupled empirical-potential and
tight-binding simulation.

Figure 4: Crack speed as a function of energy release rate G for coupled EP-TB simulation (black squares)
and experiment (red dots, from Ref. 6).  Dashed lines indicate Griffith criterion of minimal energy release
rate.

Figure 5: A comparison of crack tip features in a coupled EP-TB (left panels) and a pure EDIP (right
panels) simulation.

Figure 6:  Energy  (left panel) and force (right panel)  as a function of opening displacement along the
(111) direction computed with the listed empirical potential and tight-binding models.



Figure 3: Simulation
snapshots showing the
crack position at 4 times
in a coupled empirical-
potential and tight-
binding simulation.

Figure 2: Detail of initial crack tip in the
IIM simulation.  Red atoms indicate the
empirical potential region, green atoms
indicate the tight-binding region, and blue
atoms indicate the handshaking region.

Figure 1: Coupled Stillinger-Weber empirical potential and finite element continuum mechanics
simulation of fracture in silicon.  The left hand panel shows a large scale view of the crack, and right hand
panel details the structure of a tendril of disordered material with a dislocation at its tip.



Figure 5: A
comparison of crack
tip features in a
coupled EP-TB (left
panels) and a pure
EDIP (right panels)
simulation.

Figure 4: Crack speed as a function
of energy release rate G for coupled
EP-TB simulation (black squares)
and experiment (red dots, from Ref.
6).  Dashed lines indicate Griffith
criterion of minimal energy release
rate.

Figure 6: Energy  (left panel)
and force (right panel) as a
function of opening


